

Semi-Automated Formant Extraction with Praat

A Paper on Doing Computational Linguistics

Taylor J. Meek
June 3, 2008

LING 435: Applied Linguistics
Portland State University

My choice of project centered on Computational Linguistics, and particularly the fascination I

developed with Praat’s role in Phonetics. Jeff Conn’s (Assoc. Prof. of Applied Linguistics, PSU) dialect

studies made me curious about his methods

of capturing speakers’ vowel inventories, and

through discussions with him, came to find

that the work necessary to chart these vowel

inventories, such as the one in Fig. 1,

represent a largely manual and lengthy

process. From my background as a computer

programmer in business environments, this seemed cumbersome and material ready for automation.

When the opportunity arose for me to investigate and work on this problem in Applied Linguistics, I felt

confident that I could achieve some measurable success.

Fig. 1, Different Vowel Systems – Portland (Conn, 2008, p. 31)

As a result, I first met with Jeff Conn on April 16 to discuss his dialect research further. I followed

methodologies from systems analysis to identify the key problems with the system as it stands and what

an optimal solution would look like. His process for plotting vowels used Praat, a custom Praat script to

export formant frequencies, Microsoft Word to edit the exported file, and Plotnik to graph the vowels.

The exportation from Praat involved choosing the center of vowels based on the points that Praat draws

and running a scripted command which also allowed the notation of the word and Plotnik’s non-IPA-

based code representing the point. This step was repeated for each file and each vowel to be plotted,

followed by opening the data file in Word and editing each entry so that it matched the format that

Plotnik would take in.

With the knowledge that Praat could use custom scripts, and that Plotnik utilized a specialized

format for its data files, I set out to use the Praat scripting interface to export a data file that could be

quickly used with Plotnik. Praat defines scripts as “an executable text that consists of menu commands

and action commands” (Boersma & Weenink, 2008), and essentially allows the developer to duplicate

user keystrokes and mouse-clicks automatically, enabling a user to turn what was a hundred-command

process into just a few commands. The first phase to this was general research on Praat, other tools in the

field, and the dialect studies that benefit from such tools in the first place. Following that I began

studying Praat’s scripting interface, which turned out to be a based on a fairly basic programming

language. I ended up the first night of working on that with a script (Appendix 3) that takes a Sound

object and generates a tab-delimited text-file based on time at regular intervals, with formant frequencies

based on what Praat guesses them to be. This was something that could be opened in Microsoft Excel or

other spreadsheet programs without problems for ad-hoc analysis.

The problem I immediately discovered, though, was that while Praat would display only valid

formants in its internal display of a sound file, it would export formants for every portion of the sound

file even when the amplitude was negligible, essentially rendering the output file with every millisecond

filled with some noise or another. When graphing a sound file containing successive American English

vowels enclosed by a [b], [g], [v] or [c] and a [t] or [d] (Ladefoged, Table 4.2, 2006) in Excel on a

reverse axis, I was able to filter the data by cutting the data back to F1s of less than 800 Hz, and F2s lower

than 2,400 Hz (based on formant frequencies representative of American English vowels (Ladefoged, A

Course in Phonetics, 2006)), which cleared out a lot of the silence and also a great majority of the

consonantal sounds, reducing my total number of samples from 1,967 to 881. This graph appeared to

represent diphthong sounds

accurately, which was very exciting,

considering the Plotnik program

(Fig. 1) only represented single

points on a graph. These

diphthongs appeared (Fig. 2) as

progressive markers forming only

slightly erratic lines. Since none of my data was transcribed or annotated, I have no way of identifying the

source of the other points on my chart, since they could also be vagrant consonants or silence that was

not removed by filtering high frequencies in F1/F2. A close examination of the chart will also reveal

darker clusters of samples, which I believe may be the more fixed vowels, appearing clustered and

numerous due to their relative stability over the course of a few milliseconds of speech. This chart was

the end product in my 7 hours of work with Praat and Excel, and I never even got to the point of

downloading Plotnik.

Fig. 2; see full chart as Appendix 1

There is obviously further work to be done in this process. I will highlight a number of things that I

consider to be major hurdles in this process. The first, and most important of which, I believe to be

Praat’s “feature” of exporting formants that do not really exist, especially when compared with its own

internal views. I believe that the easiest way to counteract this would be to account for the amplitude of

the sound signal at the same time samples and eliminate any that fall under a certain threshold, as

specified by the user. Unfortunately this will not work in noisy environments where the amplitude of the

noise is greater to or equal of that of some of the speech samples, so using this tool would never be

feasible in some sort of field environment. However, there is also significant acoustic research into noise

reduction strategies (O'Shaughnessy, 2000, p. 415) that, while likely too complex for integration into

Praat, could still yield results.

Secondly is the issue of hiding consonants from the data. In an automated method, removing

samples with amplitudinally significant upper frequencies that describe fricatives or the exclusion of non-

voiced sounds could be a start. Alternatively, moving to a completely different approach may be more

appropriate. Since Plotnik does not represent the movement of diphthongs, and the process of

extracting formants manually only takes a sample point, it may be worthwhile to combine a method of

manually selecting the entire range of a vowel in Praat for exportation of its formant paths into Excel,

which is capable of showing such travel.

 This last suggested method would also approach a third concern of mine, and that is the lack of

annotation in the Excel graph. Each point is represented identically as a red dot, which is not entirely

useful for discriminating sounds from one another. By reducing the process back to a semi-manual one,

these annotations could be marked during the process and once again placed on the graph. Alternatively,

amplitude change recognition could be used to recognize separation between words or even some

syllables prior to a complete oral closure, and then those marked sequentially as new points to consider

as part of a set. This segmentation could also be done automatically with a more sophisticated

segmentation system, such as those based on patterns of amplitude or spectral frequencies.

(O'Shaughnessy, 2000, pp. 369, 386-402) I also conceptualized a basic method (Appendix 2) to

sequential samples for their deviation from one another, and to identify contiguous sequences as those

samples within a specified margin of each other, which I tested in Excel and seemed to have some limited

success with, though it would be much better implemented within the Praat script itself.

What I set out to do was to create a tool that would simplify the work of dialect researchers so that

they could more quickly plot speaker vowel inventories. What I ended up doing was focusing on trying

to convince Praat to output clean formant samples that mean something. Plotting them was fairly easy

once I got the data filtered, but even then, since I had not segmented the sounds, the data it presented

was meaningless to me.

How does this work relate to applied linguistics? If Davies (2007) is correct in saying that all

linguistics is applied linguistics, then whether a speech recognition tool falls into the scope of a tool for

ordinary persons or theoretical linguists, it still acts as an intermediary between the fields of computer

science and that of linguistics, combining the knowledge of each to produce an apparatus for making

work easier or better. This too is the goal of “applied” computer science: to produce something that

alleviates human work or improves upon it. Even computational linguistics has an applied computational

linguistics camp, but that seems extraordinarily complicated—since after all, the only purpose of the

theoretical portion of computational linguistics is to provide meaningful ideas and tools for the

application side to implement problem solving solutions with. As my work shows above, that distinction

becomes almost invisible because as a developer, problems will always arise, and working around those

with novel approaches is the only way to get past them; if those approaches don’t exist, they must be

created, which requires both a theoretical knowledge of linguistics and the applied computational or

other knowledge to implement your solutions.

Works Cited
Boersma, P., & Weenink, D. (2008, May 31). Praat Manual: Scripting. Amsterdam, Nederland.

Conn, J. (2008, April 22). SPHR 370 S08 Lecture Notes. Retrieved 4 6, 2008, from Jeff Conn's Webpage:
http://web.pdx.edu/~connjc/Phnx%20S08%207%20Apr%2022.ppt

Davies, A. (2007). History and 'definitions'. In An Introduction to Applied Linguistics (pp. 1-12).
Edinburgh: Edinburgh U. Press.

Ladefoged, P. (2006). A Course in Phonetics. Boston: Thomson Wadsworth.

Ladefoged, P. (2006). Table 4.2. Retrieved 6 4, 2008, from A Course in Phonetics:
http://hctv.humnet.ucla.edu/departments/linguistics/VowelsandConsonants/course/chapter4/Bsoun
ds/bruce42column1.aiff

O'Shaughnessy, D. (2000). Speech Communications: Human and Machine. Piscataway: IEEE Press.

‐1200

‐800

‐400

‐800 ‐700 ‐600 ‐500 ‐400 ‐300 ‐200 ‐100 0

Appendix 1: bruce42column1.aiff Formants, F1<800, F2<2400

Hz

Note: Frequencies are displayed as being in the negative for display
purposes only. Actual frequencies are the absolute values of the
indicated ranges.

‐2400

‐2000

‐1600

F2

F1

Appendix 2
Conceptual Method for identifying contiguous progressive samples
in a formant analysis.

5/26/2008

With a given frame,
 Look at each formant,
 And compare it to the next frame's corresponding formant,
 And if the two formants are within MARGIN-OF-ERROR% of each other,
 Mark them as contiguous,
 And if each formant is a relative contiguous match,
 Mark the entire frame as contiguous.
 Otherwise,
 Mark the next formant as the start of a new contiguous set.

With a given contiguous set,
 Identify the formant ratios for each set,
 And note the relative progression from start to finish.

Appendix 3
Script File for Praat Formant Exportation

Note: Using this script requires fixing the linebreaks from the published form. For a downloadable
version, visit http://www.lingnik.com/projects/formantinventory/

! ExtractFormantsTabbedFast.praat
! (c) Taylor J. Meek, May 2008
! Uses in‐built formant identification and
extraction to write the formant data to a tab‐
delimited file.

! Future Improvements:
! + Options to both Export and View.
! + Ask for a file name.
! + Include ratios in view mode.
! + Limit number of formants to output.

preselected = selected ("Sound")

form Export Soundfile Formants
 comment The filename will be the name of
the source file with the extension .txt, suitable
for opening
 comment directly with Excel or another
spreadsheet program. i.e. 'ahmed‐hello.wav' >
'ahmed‐hello.txt'
 comment The file will be exported to
the directory Praat ran from.
 choice Data_Mode 1
 button Export Only
 button View Only
! button View and Export
! positive
Maximum_Contiguous_Deviation_(Hz) 30
 comment The following settings match
those from "Sound: To Formant (Burg method)"
dialog.
 real Time_step_(s) 0.0
 positive Max._number_of_formants 5
 positive Maximum_formant_(Hz) 5500 (=
adult female)
 real Window_length_(s) 0.025
 positive Pre‐emphasis_from_(Hz) 50
endform

To Formant (burg)... 0.0 5 5500 0.025 50
To Formant (burg)... 'Time_step'
'Max._number_of_formants' 'Maximum_formant'
'Window_length' 'Pre‐emphasis_from'
filename$ = selected$ ("Formant")

if 'Data_Mode' = 1
 filedelete 'filename$'.txt

 ! Write the header row for the output file.
 fileappend 'filename$'.txt Sound'tab$'Time
 for iformant to 'Max._number_of_formants'
 fileappend 'filename$'.txt
'tab$'Formant'iformant''tab$'Ratio'iformant'
 endfor

 ! Parse each frame,

 numberOfFrames = Get number of frames
 for iframe to numberOfFrames
 time = Get time from frame number... iframe
 fileappend 'filename$'.txt
'newline$''filename$''tab$''time:6'
 lastpitch = ‐1
 for iFormant to 'Max._number_of_formants'
 pitch = Get value at time... iFormant time
Hertz Linear
 if lastpitch = ‐1
 fileappend 'filename$'.txt
'tab$''pitch:3'
 lastpitch = pitch
 elsif pitch = undefined
 fileappend 'filename$'.txt 'tab$'0'tab$'0
 else
 pitchratio = pitch/lastpitch
 fileappend 'filename$'.txt
'tab$''pitchratio:5''tab$''pitch:3'
 lastpitch = pitch
 endif
 endfor
 endfor
 Remove
 select 'preselected'

elsif 'Data_Mode' = 2

 ! Write the header row for the output file.
 clearinfo
 print Sound'tab$'Time
 for iformant to 'Max._number_of_formants'
 printtab
 print F
 print 'iformant'
 endfor
 printline
 ! Write each frame to the info window.
 numberOfFrames = Get number of frames
 for iframe to numberOfFrames
 time = Get time from frame number... iframe
 print 'filename$''tab$''time:6'
 nFormants = 5
 for iFormant to nFormants
 pitch = Get value at time... iFormant
time Hertz Linear
 if pitch = undefined
 print 'tab$'.
 else
 print 'tab$''pitch:3'
 endif
 pitch = undefined
 endfor
 printline
 endfor
endif

	Works Cited
	Appendix 2
	Appendix 3

